Le carburateur

18-03-2010 à 11:59:48
Le carburateur est un organe fondamental du moteur à combustion interne essence ou éthanol (mais pas du moteur Diesel). Il est également présent sur des chaudières à carburants liquides.

Cet organe permet de préparer un mélange d'air (le comburant) et de carburant, ayant le bon rapport de carburant/air, qui va parfaitement brûler dans la chambre de combustion. Ce mélange d'air et de vapeur de carburant est aspiré lors de l'admission dans le cylindre. Il a également pour rôle de régler la vitesse et le couple du moteur.

Le rapport théorique idéal air/essence pour le moteur à explosion est de 14,7 : 1 soit 14,7 parts d'air pour 1 part de carburant. On parle alors de mélange stœchiométrique. En pratique, pour obtenir une combustion idéale et ainsi permettre une économie de carburant, on brûle une proportion air/essence d'environ 18:1.

Le mot carburateur provient du terme carbure, qui est un composé binaire du carbone. En chimie organique, le terme a le sens plus spécifique de l'augmentation du carbone dans le contenu d'un combustible par mélange avec un gaz volatil d'hydrocarbures.

--------------------------------------------------------------------------------

Composition

Le carburateur est situé à l'entrée des conduits d'admission où il assure le mélange air essence aspiré par le moteur. Il possède :

* Une arrivée d'air, air qui passe d'abord à travers un filtre à air sur les véhicules pour le débarrasser des impuretés qui pourraient gêner la carburation.

* Une arrivée d'essence, essence qui est envoyée par une pompe ou par gravité et stockée dans une cuve

* La buse (ou diffuseur), qui crée la dépression nécessaire à l'aspiration du carburant. Le dessin de la partie étranglée du diffuseur nécessite une étude préalable afin d'éviter l'apparition, dans la colonne d'air, de turbulences qui gêneraient l'aspiration du combustible. Par ailleurs, la vitesse d'aspiration au niveau de l'étranglement doit être limitée. La vaporisation complète du mélange est réalisée dans la zone aval du diffuseur jusqu'à la soupape d'admission.

* Le boisseau, qui a pour fonction de réguler les quantités d'air et d'essence admise dans le moteur. Du côté entrée d'air, le boisseau est coupé en biais. La coupe en biais plus ou moins affirmée détermine la quantité d'air admise lorsque le pilote commence à accélérer. Plus la coupe est haute, plus la mélange est pauvre.

* La cuve, dans laquelle un flotteur muni d'un pointeau permet l'ouverture ou la fermeture de l'orifice d'arrivée de l'essence. Ce système élimine les effets de la différence de niveau entre le réservoir et le carburateur.

* Le gicleur, sorte de petite vis comportant un orifice, qui sert à introduire le combustible dans la zone de dépression du diffuseur. Le débit du gicleur dépend de son diamètre et de la dépression. Il est placé, à partir de la cuve, en un point facilement accessible sur la canalisation de carburant.

* Le papillon, placé dans le conduit en aval du diffuseur. Il s'agit d'un clapet qui régule le débit du mélange gazeux, en fonction de l'effort demandé au moteur, admis dans les cylindres. Il est ainsi commandé par la pédale d'accélérateur.

* Une sortie communiquant avec les conduits d'admission, afin d'envoyer le mélange formé pour la combustion.

--------------------------------------------------------------------------------

Démarrage à froid

Lors de l'allumage du moteur, la dépression est trop faible pour aspirer le carburant et le dosage est très pauvre en essence. Par ailleurs, le moteur étant froid, l'essence s'évapore peu et forme des gouttelettes d'essence qui ont davantage tendance à se déposer sur les éléments froids de l'admission, au lieu de se pulvériser et se mélanger à l'air.

Le problème est résolu grâce à l'utilisation d'un dispositif de facilitation du démarrage (choke en anglais, enrichisseur ou starter en français), qui permet au mélange d'être enrichi en essence au démarrage. Il agit de façon que la proportion d'air soit réduite, par l'intermédiaire d'un volet d'aspiration, ou en augmentant la proportion en essence en agissant sur les gicleurs.

Un système intermédiaire de carburation est parfois utilisé : il ne fonctionne qu'au démarrage. L'air est aspiré directement de l'extérieur, ou encore à partir du conduit principal en amont du papillon. Dans ce cas particulier, l'essence est puisée directement dans la cuve et le papillon doit rester fermé, afin que le mélange carburé ne passe que par le dispositif de démarrage.


Le ralenti

Lorsque le moteur fonctionne au ralenti, le papillon est fermé ou très peu ouvert. La partie en aval du papillon subit alors une forte dépression. Cette dépression est utilisée pour faire appel au carburant nécessaire à travers un gicleur de ralenti.

Placé juste au niveau du bord du papillon, il ne débite que lorsque la situation précédente s'effectue. Le papillon s'ouvre progressivement et la dépression qui s'exerce sur le gicleur de ralenti diminue jusqu'à ne plus être suffisante pour provoquer l'aspiration de l'essence. La dépression dans le diffuseur augmente engendrant le fonctionnement du gicleur principal. Le réglage du ralenti moteur s'effectue par la vis de butée du papillon réglant l'admission d'air et par une vis-pointeau réglant l'admission de carburant, afin d'obtenir un mélange homogène air-essence.

Conduite générale

La cuve est munie d'un système automatique qui ferme l'arrivée d'essence lorsqu'elle est pleine (il s'agit d'un pointeau couplé a un flotteur ; quand le niveau dans la cuve n'est pas suffisant, le flotteur descend à mesure que l'essence se vide et le pointeau, fixé au flotteur sert de soupape afin de faire entrer l'essence dans la cuve et de la stopper quand elle est pleine). La cuve communique par des canaux calibrés avec les gicleurs.

L'entrée d'air donne dans un passage rétréci où débouchent les sorties des gicleurs. Dans cette zone rétrécie, le flux d'air subit une dépression (effet Venturi), qui aspire l'essence à travers les gicleurs. Elle est ainsi pulvérisée dans l'air. Derrière cette zone se situe un obturateur mobile, le papillon des gaz qui pilote le flux d'air et par conséquent la charge du moteur.

Lorsque la pédale de l'accélérateur est à mi-enfoncée, le boisseau ouvre à moitié le conduit d'admission et l'aiguille du gicleur, solidaire du boisseau, détermine la quantité d'essence injectée dans le mélange par le gicleur. Entre 1/4 et 3/4 d'ouverture, l'essence est ainsi proportionnelle à l'air admis. Cette plage peut être légèrement modifiée par le réglage de la hauteur de l'aiguille. Au-delà de 3/4 d'ouverture de la poignée d'accélérateur, jusqu'à son ouverture complète, seul le gicleur détermine la quantité d'essence admise. C'est à ce moment-là que le diamètre du gicleur choisi est la plus importante.

Accélération brusque

Lors d'une brusque accélération, l'ouverture du papillon est totale et entraîne une augmentation rapide du débit d'air mais qui n'engendre pas une augmentation du débit de carburant. En effet en cas de brutale accélération, la quantité d'essence (plus dense que l'air) diminue brutalement dans le mélange.

Afin d'enrichir le mélange lors des reprises, beaucoup de carburateurs sont équipés d'une pompe de reprise, dispositif qui ajoute une quantité d'essence proportionnelle à chaque action rapide d'enfoncement de l'accélérateur. La pompe envoie donc une giclée d'essence afin de supprimer ce « trou » à l'accélération. Le gicleur de la pompe possède généralement 5 trous qui s'ouvrent au fur et à mesure. Ce phénomène disparaît avec les carburateurs à membrane.

Sur une pompe de reprise à membrane, la fermeture du papillon détend le ressort de rappel de la membrane et celle-ci, en se retirant, provoque une dépression dans la chambre de la pompe. La soupape de sortie empêche la sortie du carburant, tandis que la soupape d'entrée se lève, permettant ainsi un afflux de carburant suffisant pour remplir rapidement la chambre de la pompe.

L'amplitude de la course de la membrane détermine la quantité d'essence injectée, tandis que la largeur de l'orifice de sortie définit la vitesse de sortie du carburant pompé. L'utilisation d'un ressort octroie davantage de progressivité dans la course du levier de commande de la membrane.

--------------------------------------------------------------------------------

Carburateur élémentaire

Les premiers carburateurs qui ont équipé les premiers véhicules propulsé par un moteur à explosion, comme celui de la De Dion de 1899, n'étaient pas en mesure de répondre à toutes les exigences. Appelés à léchage ou à barbotage, ils se composaient d'un réservoir d'essence dans lequel pénétrait un tube, pour renouveler l'air aspiré par le moteur, le mélange air/essence étant assuré par l'évaporation de cette dernière.

Dans les carburateurs à léchage, l'air traversait l'appareil en léchant la surface de l'essence. Ce système fut ensuite perfectionné par le montage dans l'appareil d'une série de diaphragmes qui permettaient un enrichissement progressif du mélange, grâce au préchauffage du carburant au contact des tubulures d'échappement. Dans les carburateurs à barbotage, le tuyau d'admission d'air se prolongeait jusqu'au fond de l'appareil. L'air, parfois préalablement réchauffé, barbotait dans la cuve et s'enrichissait progressivement des vapeurs d'essence.

Carburateur à dépression

Le carburateur à dépression est une évolution du précédent, le boisseau étant actionné par une membrane sensible à la pression, le plus souvent on trouve un trou sous le boisseau et l'air qui rentre dans le carburateur crée une dépression dans le boisseau soutenue par la membrane en passant sous lui, ce qui permet à ce dernier de remonter sous l'effet de vide créé en lui et dans la chambre qui le surmonte, le flux d'air est régulé par un papillon. Ce système empêche l'étouffement du moteur en cas d'ouverture brutale des gaz, car même si le papillon est ouvert en grand, le boisseau ne réagit pas à l'aspiration du moteur qui est faible et, ne nécessite donc pas une grande quantité de gaz, la carburation se régule d'elle même.

Mais il n'est pas conseillé dans le cadre par exemple d'une configuration préparé pour la compétition, son temps de réponse étant trop long en comparaison d'un carburateur à boisseau à câble, on rencontre surtout ce cas de figure sur les motos.

Carburateur à vide

Le mélange stœchiométrique est dans la pratique extrêmement difficile à réaliser, notamment sur toute la plage de régimes de fonctionnement du moteur, c'est pourquoi beaucoup de carburant arrive sous forme liquide dans les cylindres et ne peut donc pas brûler correctement. Pire, la vaporisation étant endothermique, il se condense sur les parois, abîmant les cylindres et les pistons, absorbant une partie de l'énergie de la combustion et, se dissociant en polluants (ozone).

Pour éviter cela, il est indispensable de vaporiser totalement le carburant. L'énergie investie pour vaporiser ce carburant (par une basse pression, comme son nom l'indique) est très largement compensée par l'augmentation du rendement, ce qui permet de brûler un mélange plus pauvre et donc moins polluant.

L'un des principaux problèmes rencontrés en matière de pollution par les moteurs fonctionnant à l'essence est précisément le rejet « d'imbrûlés » à la sortie de l'échappement, outre les lois de distribution (croisement de soupapes), si l'on savait parfaitement mixer l'essence (incompressible) avec l'air (compressible) et ceci, dans les bonnes proportions (1/15e) et à tous les régimes, alors cette « mixture », qui se doit d'être parfaitement homogène jusque dans la chambre de combustion, serait par conséquent entièrement et réellement « brûlée ».

Dans cette hypothèse, outre le fait d'une réduction de la consommation, la pollution relevée à la sortie des gaz d'échappement serait donc également réduite, même si des quantités non négligeables de dioxyde de carbone (CO2) sont issues de la combustion et donc inhérentes à cette source d'énergie. La pollution produite par les moteurs Diesel fonctionnant au gazole génèrent du CO2 mais aussi des suies (fines particules) potentiellement cancérigènes.

Carburateurs multiples

Lorsque l'on veut améliorer la puissance d'un moteur, il est préférable d'utiliser un carburateur par cylindre ou groupe de cylindres.

La manière la plus simple de procéder est d'utiliser un carburateur double corps, dissociant suffisamment les fonctions pour chaque cylindre pour simuler deux carburateurs.

Pour aller plus loin (véhicules de sport, motocyclettes, etc.), on utilise des carburateurs totalement indépendants. À l'origine, ces carburateurs étaient montés individuellement, commandés par des commandes séparées (autant de câbles que de carburateurs), mais ce montage était délicat à régler. De nos jours, les carburateurs sont assemblés sur une rampe, et la commande de tous les carburateurs est centralisée par un palonnier.




--Message édité par le 17-03-10 à 08:42:58--
Scrapyard Dog
  • Liens sponsorisés



18-03-2010 à 11:59:48



Le cheval-vapeur est le meilleur ami de l'homme.